the characteristic stress

This inverse relationship between void ratio e and effective stress σ 0 can be generalized as a four-parameter inverse power func- tion that accommodates the two void ratio asymptotes eL and eH

e ¼ eH þ ðeL − eHÞ � σ 0 þ σ 0c

σ 0c

�−β ð9Þ

When the applied effective stress equals the characteristic effective stress σ 0 ¼ σc and β ¼ 1, the predicted void ratio is the average of the asymptotes e ¼ ðeL þ eHÞ=2. Higher β-exponents cause higher early compressibility at lower stresses. Power- type equations have been suggested in the past (Hansen 1969; Butterfield 1979; Juárez-Badillo 1981; Houlsby and Wroth 1991; Pestana and Whittle 1995).

Exponential: The main characteristic of exponential functions y ¼ expðxÞ is that the rate of change dy=dx is defined by the cur- rent state. Sigmoidal and Gompertz functions are special examples (Gompertz 1825; Gregory et al. 2006). The four-parameter Gompertz function can be expressed in terms of stress and void ratio, and adapted to satisfy eL and eH as follows:

e ¼ eH þ ðeL − eHÞ · exp− � σ 0 σ 0c

� β

ð10Þ

When the exponent β ¼ 1, the simpler three-paremeter expo- nential expression is obtained (Cargill 1984); it predicts that the soil will experience 63% of the volume change eL − eH when the applied effective stress equals the characteristic effective stress σ 0 ¼ σ 0c.

Hyperbolic: The hyperbolic model is extensively used in geo- mechanics to capture the prepeak deviatoric stress versus strain data (Kondner 1963; Duncan and Chang 1970). This model has two parameters: one defines the initial rate of change dy=dxjo, and the other provides the asymptotic value of y as x → ∞. The model can be adapted to capture compressibility data in terms of σ 0 − e. The generalized four-parameter hyperbolic model is

e ¼ eL − ðeL − eHÞ 1 1þ �σ 0cσ 0�β

ð11Þ

The simpler hyperbolic model (β ¼ 1) predicts that the void ra- tio will reach the intermediate void ratio e ¼ ðeL þ eHÞ=2when the applied effective stress equals the characteristic stress σ 0 ¼ σ 0c. Structuration and yield stress can be captured with higher values of the β-exponent.

© ASCE 06016003-2 J. Geotech. Geoenviron. Eng.

J. Geotech. Geoenviron. Eng., 06016003

D ow

nl oa

de d

fr om

a sc

el ib

ra ry

.o rg

b y

Po rt

la nd

S ta

te U

ni ve

rs ity

o n

05 /0

1/ 16

. C op

yr ig

ht A

SC E

. F or

p er

so na

l u se

o nl

y; a

ll ri

gh ts

r es

er ve

d.

Arctangent: Other functions that provide S-shaped trends can be adapted to satisfy asymptotic conditions relevant to soil compres- sion data. For example, the arctangent function can be generalized to include the power of the stress σ 0β in order to fit more brittle soil responses

e ¼ eL þ 2

π ðeL − eHÞ arctan

� − � σ 0

σ 0c

� β �

ð12Þ

in terms of four model parameters eL, eH, the characteristic stress σ 0c, and the β-exponent. For β ¼ 1, the void ratio reaches e ¼ ðeL þ eHÞ=2 when the applied effective stress equals the character- istic stress σ 0 ¼ σ 0c.